Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization.
نویسندگان
چکیده
Toll-like receptor 4 (TLR4) and MD-2 recognizes lipid A, the active moiety of microbial lipopolysaccharide (LPS). Little is known about mechanisms for LPS recognition by TLR4-MD-2. Here we show ligand-induced TLR4 oligomerization, homotypic interaction of TLR4, which directly leads to TLR4 signaling. Since TLR4 oligomerization normally occurred in the absence of the cytoplasmic portion of TLR4, TLR4 oligomerization works upstream of TLR4 signaling. Lipid IVa, a lipid A precursor, is agonistic on mouse TLR4-MD-2 but turns antagonistic on chimeric mouse TLR4-human MD-2, demonstrating that the antagonistic activity of lipid IVa is determined by human MD-2. Binding studies with radioactive lipid A and lipid IVa revealed that lipid IVa is similar to lipid A in dose-dependent and saturable binding to mouse TLR4-human MD-2. Lipid IVa, however, did not induce TLR4 oligomerization, and inhibited lipid A-dependent oligomerization of mouse TLR4-human MD-2. Thus, lipid IVa binds mouse TLR4-human MD-2 but does not trigger TLR4 oligomerization. Binding study further revealed that the antagonistic activity of lipid IVa correlates with augmented maximal binding to mouse TLR4-human MD-2, which was approximately 2-fold higher than lipid A. Taken together, lipid A antagonist lipid IVa is distinct from lipid A in binding to TLR4-MD-2 and in subsequent triggering of TLR4 oligomerization. Given that the antagonistic activity of lipid IVa is determined by MD-2, MD-2 has an important role in a link between ligand interaction and TLR4 oligomerization.
منابع مشابه
Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition.
Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide (LPS). MD-2 is associated with TLR4 and imparts LPS responsiveness to it. Little is known, however, as to whether MD-2 directly regulates LPS recognition by TLR4. To address the issue, we took advantage of a species-specific pharmacology of lipid IVa, an analogue of lipid A. Lipid IVa acted agonistically on mouse (m) TLR4/MD-2 but not on...
متن کاملStructural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2.
Lipopolysaccharide (LPS), also known as endotoxin, activates the innate immune response through toll-like receptor 4 (TLR4) and its coreceptor, MD-2. MD-2 has a unique hydrophobic cavity that directly binds to lipid A, the active center of LPS. Tetraacylated lipid IVa, a synthetic lipid A precursor, acts as a weak agonist to mouse TLR4/MD-2, but as an antagonist to human TLR4/MD-2. However, it ...
متن کاملEnergetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response
Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced...
متن کاملIdentification of Key Residues That Confer Rhodobacter sphaeroides LPS Activity at Horse TLR4/MD-2
The molecular determinants underpinning how hexaacylated lipid A and tetraacylated precursor lipid IVa activate Toll-like receptor 4 (TLR4) are well understood, but how activation is induced by other lipid A species is less clear. Species specificity studies have clarified how TLR4/MD-2 recognises different lipid A structures, for example tetraacylated lipid IVa requires direct electrostatic in...
متن کاملThree-dimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and species-dependent activities of Lipid IVA in the mammalian LPS sensor system
A literature review concerning the unexpected species differences of the vertebrate innate immune response to lipid IVA was published in CSBJ prior to the present computational study to address the unpaired activity-sequence correlation of prototypic E. coli -type lipid A and its precursor lipid IVA regarding human, murine, equine and canine species. To this end, their sequences and structures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International immunology
دوره 16 7 شماره
صفحات -
تاریخ انتشار 2004